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Geometrical Linear Responses and Directional Energy
Derivatives for Energetically Degenerate MCSCF Electronic

Functions

Keld Lars Bak and Jack Simons

Chemistry Department

University of Utah

Salt Lake City, Utah 84112

ABSTRACT

For state-averaged multiconfigurational self consistent field (SA-MCSCF) wave func-
tions, second-order geometrical response equations are derived that allow the determination
of first-order configuration amplitude responses for equally weighted, energetically degen-
erate states. The first-order response equations obtained in earlier work do not suffice to
determine these particular response parameters. To formulate such a derivation in a well
defined manner, it is found that a specific linear combination of the degenerate states must
be formed; this specific combination of states then defines how state energies and wave
functions evolve as one passes through the surface intersection. The linear combination
among the degenerate states is dependent upon the molecular distortion for which the re-
sponses are to be evaluated. Expressions for first- and second-order directional energy
derivatives for these energetically degenerate wave functions are also derived. All the
equations obtained are computationally tractable and expressed in terms of quantities that
result from optimizing the SA-MCSCF wave functions and from solving the first- and part
of the second-order geometrical response equations.
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I. INTRODUCTION

A. Intersections of Adiabatic Surfaces and Non-Adiabatic Couplings

In quantum chemistry, adiabatic potential surfaces are defined as the energy eigenvalues

of the electronic Hamiltonian obtained within some approximation scheme and taken as

continuous functions of the internal nuclear coordinates. Internal coordinates are used be-

cause electronic energies are not affected by translations or rotations of the nuclear frame-

work. The number of internal coordinates for polyatomic molecules is therefore 3NA - 6,

with NA being the number of nuclear centers. Each computational method implies its own

particular set of adiabatic surfaces. In this work, emphasis is placed on adiabatic surfaces

that result from the state-averaged multiconfigurational self-consistent field (SA-MCSCF)

method.

Potential surfaces are of fundamental importance in chemistry. They form the basis

underlying the concept of equilibrium molecular configurations, the study of chemical reac-

tions and the interpretation of molecular spectra. These functions of 3NA - 6 variables may

intersect along "seams" of various lower dimension. Within such intersections, two or

more eigenstates are energetically degenerate for the corresponding nuclear configurations.

The degeneracies may or may not be imposed by symmetry; in any case, the treatment of

such degenerate cases requires special attention for both computational and conceptual rea-

sons. Not surprisingly, their exist many good papers on these topics including more recent

papers by Mead and Truhlarl-4 and by Davidson and coworkers. 5-7 The very recent work

of Frey and Davidson7 presents an excellent review that focuses on symmetry-imposed

crossings but also address general intersections. In Ref. 7 an extensive list of references is

also given.

The location and characterization of geometries at which intersections of adiabatic en-

ergy surfaces occur is of considerable importance. Non-adiabatic effects (i.e., couplings

among adiabatic surfaces induced by dynamic motions of the underlying nuclei) are often

large in magnitude for potential surfaces that are energetically close, or for surfaces that

cross. Lengsfield, Saxe, and Yarkony 8-11 have shown that state-averaged multiconfigura-

tional self consistent field (SA-MCSCF) wave functions are advantageous to use for the

analytic evaluation of non-adiabatic coupling because the orbital and configurational de-

scriptions of the interacting states can be treated in a "balanced" manner, and because the

same cst of orthonormal orbitals are used for the interacting states.
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The key to the evaluation of non-adiabatic couplings are the first-order orbital- and

configuration-amplitude (so-called CSF) responses. These responses describe how the

molecular orbitals and configuration mixing amplitudes (also known as CI-coefficients) of

the interacting states respond to motions of the nuclei. Considering a nuclear distortion

along the direction a, and denoting by Kl the amplitude on the basis function y for the

molecular orbital i, the first order orbital-amplitude responses are written as (aK )/(1a) =

U a Ku. Similarly, when for state A the amplitude on configuration I is denoted CIt, the
I

first order CSF-responses are written (WC' )/(a) -- Xi V CB. That is, the first-order
B

orbital- and CSF-responses are specified by the expansion-coefficients, Uji and VA B,

which multiply the orbital or configuration mixing amplitudes prior to distortion, respec-

tively. In the following, we refer to the Va B coefficient as the first order state-state

responses among the A and B states.

As shown by Lengsfield and coworkers, 8 and by the authors and Boatz, 12 these first-

order orbital- and CSF-responses, necessary for evaluation of non-adiabatic coupling, re-

sult from solving the first-order geometrical response equations obtained by making the

SA-MCSCF energy functional, ESA, stationary and from the secular equations for each

state contained in ESA. In Ref. 12, these equations are derived in detail and presented in a

form that works for interacting non-degenerate states and for degenerate states that do not

appear with equal weighting in ESA.

B. The Case Involving Equally Weighted Degenerate States Presents

Special Difficulties

To treat energetically degenerate states in a "balanced" manner, it is generally most rea-

sonable to weight them equally in the SA-MCSCF ESA. Particularly, if the energy degen-

eracy is imposed by symmetry, different weighting of the degenerate states in ESA is inap-

propriate, and may lead to non-credible CSF-responses. Since first order CSF-responses

for equally weighted, energetically degenerate states can not be obtained from the equations

of Ref. 12, an additionally theory that accomplishes this is needed.

In this work, we show how second-order geometrical response equations can be used

to reach this goal. In our derivation, for a nuclear configuration where two or more states

are energetically degenerate and equally weighted, we assume that the first-order geometri-

cal response equations of Ref. 12 have been solved for a molecular deformation lying along
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a chosen direction denoted a in the 3NA dimensional space that includes translations and
rotations. These first-order equations are shown here to determine the orbital and certain of
the CSF-responses; the remainder of the CSF-responses involve only the energetically de-
generate states and are subsequently determined using the tools detailed in this work.

The parts of the CSF-responses that can not be computed from the the first-order
response equations of Ref. 12 are the first order state-state responses among states that be-
long to the degenerate, equally weighted states. It is shown here that solving the part of the
second-order geometrical response equations that arise from taking second derivatives of
the SA-MCSCF equations with respect to the a direction gives these state-state responses
among the energetically degenerate states. Combined with responses obtained from the
first-order equations, these responses then completely specify the first-order CSF-
responses of each of the degenerate states.

An essential aspect of our derivation involves taking a particular linear combination of
the energetically degenerate wave functions in a manner that makes the resulting eigenfunc-
tions evolve continuously through the crossing points. This particular combination of
states is defined in terms of the direction a in which the crossing is approached. For this
reason, the resulting wave function and energy responses are given as directional deriva-
tives rather than conventional analytic derivatives. Formulas for obtaining first- and
second-order directional energy derivatives also result from this work and remain valid
whether or not the degeneracy is symmetry imposed.

In Section II, we detail different situations under which two states can be degenerate,
and we discuss considerations appropriate to these different situations. Section III contains
the derivation of the response equations that allow the determination of first-order CSF-
responses as well as directional first- and second-order energy derivatives for a set of ener-
getically degenerate, equally weighted SA-MCSCF wave functions. In Section IV we
summarize and give our concluding remarks.

1I. GENERAL CONSIDERATIONS FOR TWO ENERGETICALLY
DEGENERATE STATES

A. Degenerate States at the Reference Geometry - Three Special Cases

When considering symmetry properties of states that are energetically degenerate, dif-
ferent situations can be observed. Generally two or more states may be energetically de-
generate for a given nuclear configuration. However, the main features of these different
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situations can be understood by considering two degenerate states only. The discussion in
this section therefore focuses on two degenerate functions, although it should be stressed
that the subsequent analysis and hence the primary results of this paper apply equally well
to triple and higher degeneracies.

At a so-called reference geometry, we denote the set of nuclear coordinates as x, and
we assume that the two electronic states 'T (x) and 'U (x) are energetically degenerate and
diagonalize the electronic Hamiltonian H(x) at x:

(%FT (x) I H(x) I IFr(x)) = ET(x) = EU(x) = (%U (x) I H(x) I FU (x)) , (la)

( 'u (x)I H(x) I P(x))- 0. (Ib)

In eqs. (1), ET (x) is the electronic energy for state T at the reference geometry.
The electronic Hamiltonian at the reference geometry has a specific point group symme-

try, and all states are labeled according to which irreducible representations of that point
group they belong as well as with their spin multiplicity. In this work, the symmetry of an
eigenstate is therefore defined as the combined spatial and spin symmetry. Since the two
states 'FT (x) and 'Fu (x) are energetically degenerate, but may or may not be symmetry de-
generate, three different situations need to be delineated:

a) The two states have different symmetry.
b) The two states have the same, symmetry-degenerate E-symmetry.
c) The two states have the same, non-symmetry-degenerate symmetry.

Case a is usually described as a symmetry allowed crossing which can happen in a
space of dimension 3NA - 7 (recall that the dimension of the general potential surface is
3NA - 6). An example of case a is provided by the BeH 2 species in C2, geometry where
the lowest IAI and IB2 potential surfaces intersect. 13 The space within which C2v symme-
try is preserved is two-dimensional; hence, the seam within which the IAI and IB2 sur-
faces intersect is one-dimensional.

Case b is described as a symmetry imposed crossing, and the Jahn-Teller theorem 14

applies to this case if the molecule is nonlinear. An example of case b is provided by the
2E' states of B3 at D3h geometry. 15 Case c is called an accidental crossing. The three-
dimensional potential energy surfaces belonging to the two lowest IAI states of 03 at the
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specific C2v geometry described by Xantheas, Elbert, and Ruedenberg, 16 where these sur-

faces intersect serves as an example of case c.

Teller 17 and, after a dispute on the topic, Mead 18 showed that for nonrelativistic

Hamiltonians and for triatomic or larger systems, energetic degeneracies for states that

globally belong to the same spin and space symmetry, can appear in 3NA - 8 dimensional

spaces. For the triatomic systems that serves as examples of case b and c, we therefore ex-

pect the degeneracies to appear in one dimension. For the B3 example it is obvious that the

one-dimensional degeneracy preserving seam is specified by the "breathing" coordinate

which preserves the D3h geometry. For 03, the described point of intersection appears for

C2v symmetry. However, this point belongs to a one-dimensional seam of intersection that

elsewhere correspond to molecular Cs symmetry. 16

B. Infinitesimal Distortion Away From the Reference Geometry

Now consider an infinitesimal displacement away from the reference geometry from x

to x + A along the distortion direction denoted a. The functions 'PT (x) and 'IYd (x), whose

CI coefficients diagonalize the Hamiltonian at x, will evolve into new functions 'IT (x + A)

and 'Pu (x + A) which may not diagonalize the Hamiltonian at this infinitesimally displaced

geometry. However, there always exists a unitary transformation to combine 'FT (x + A)

and 'Pu (x + A) into two states, 'FR (x + A) and IFs (x + A) that do diagonalize H at the in-

finitesimally displaced geometry. The criteria defining this unitary transformation are to be

found later in eq. (30). For now, it suffices to note that this transformation is dependent

upon the coordinate a along which the distortion is to be made. For this reason, the deriva-

tives obtained in this paper should be viewed as "directional derivatives" rather than as ana-

lytic derivatives.

Assuming that such a unitary transformation has already been performed, we continue

our analysis with the two eigenstates TR (x) and Fs (x). At the infinitesimally distorted

geometry we consider the point group that apply to the Hamiltonian at both the reference

and the infinitesimally displaced geometry (notice, if no rotation or translation is involved

in the distortion, this point group is the one that also applies to the Hamiltonian at the dis-

placed geometry). According to this definition, the infinitesimal distortion of the nuclear

framework can either preserve or lower the point group symmetry. Contingent upon either

of these outcomes, several resulting symmetries of the eigenstates at the displaced geometry

are possible, and the three cases a, b, and c can accordingly be split into subcases which

are important to distinguish among.

Two subcases appear under case a when distortions occur:
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al) The two states have different symmetries at the displaced geometry.
a2) The two states have the same, non-symmetry-degenerate symmetry at the displaced

geometry.

To illustrate, consider again the BeH2 molecule in C2v geometries at which the lowest
1A and IB2 potential surfaces intersect. 1 3 A C2v symmetry-preserving distortion of this
system provides an example of case al. Case a2 appears for a non-symmetry preserving
distortion that lowers the symmetry to either Cs or C1 symmetry, in which case, at the dis-
placed geometry, both states are 1A' states if of Cs symmetry and 1A states if of C1 sym-
metry. Notice that for the BeH2 example, although C1 can never become the point group
of the stationary molecule, if rotational motion is considered as a source of non-adiabatic
coupling, it could become the point group appropriate for handling such couplings.

Under the same class of distortions, case b splits into three subcases:

bi) The two states have the same E - symmetry at the displaced geometry.
b2) The two states have different symmetries at the displaced geometry.
b3) The two states have the same, non-symmetry-degenerate symmetry at the displaced

geometr,.

Let us again take the example of two 2E' states of the B3 molecule at D3h geometry. 15 A
D3h symmetry-preserving distortion such as the totally symmetric breathing mode leads to
case bl. If the distortion lowers the symmetry to C2v, the states at the displaced geometry
have 2AI and 2 B2 symmetry and case b2 is obtained. For distortions that leads to Cs sym-
metry, both states become 2A' states and we realize an example of case b3.

For case c there is only one possible subcase:

c1) The two states have the same, non-symmetry-degenerate symmetry at the displaced
geometry.

We illustrate this by again considering the special C2v geometries where the lowest 1A1

states of 03 intersects. 16 If the distortion preserves C2v symmetry, the states will still have
1A1 symmetry, and if it lowers the symmetry to Cs, then the states both become IA' states.
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In cases a 1 and b2, symmetry forbids mixing of the R and S states, and therefore the
first-order as well as higher-order state-state responses that could mix 'FR and 'Is, are
zero. In case bI the 4FR and IFS states remain energetically degenerate as the system is
distorted. Therefore, the first-order state-state response among 'FR and WPS is not well de-
fined (i.e., is arbitrary), but can be chosen as zero.

For the three remaining cases, the first-order geometrical state-state response is not so
trivially defined by symmetry; as specified earlier, these responses are likewise not pro-
vided through the equations of Ref. 12. Response equations for SA-MCSCF wave func-
tions which allow the determination of the state-state responses in these cases, and in more
complex cases where more than two states are degenerate at the reference geometry, are
derived in the next section. Since responses of wave functions and of energies are both
determined via the SA-MCSCF approximation to the Schridinger equation, they are closely
related. That is, the derivations in the next section also provide equations needed for eval-
uating first- and second-order directional energy derivatives for equally weighted energeti-
cally degenerate SA-MCSCF wave functions.

III. THEORETICAL APPROACH

A. Basic Definitions

This subsection introduces the notation and basic definitions needed for the evaluation
of the response equations that allow the determination of all geometrical linear responses
and directional first and second order energy derivatives for SA-MCSCF wave functions.

Consider a molecular system in a specific configuration defined by the positions of the
nuclei. The set of normalized electronic SA-MCSCF wave functions is denoted( 41A I A =
1, 2, ..., N ). These wave functions are expanded in a subset of all symmetry adapted
orthonormal configuration state functions (CSFs), ( D't I I = 1, 2, ..., N ), as:

N
FA= CA4D, (2)

where the CIA's are the CI-coefficients of 'PA. Since the electronic wave functions are

taken to be normalized, the Cl-coefficients must obey the condition:
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C c"CIA 8B A. (3)

The CSFs are created from a set of orthonormal molecular orbitals (MO's), ( qi I i = 1,
2, ..., M ), which again are created as linear combinations of a chosen set of atomic orbital
(AO), or symmetry adapted orbital (SO), basis functions, { Xy I u = 1, 2, ..., M

M

q'i= KXuL (4)

where the Ki's are the MO coefficients.

Assuming that the states and orbitals are real and taking the set of electronic state func-
tions to diagonalize the electronic Hamiltonian in the space they span, the following equa-
tions for the Cl-coefficients must be fulfilled:

Y 3cc(81E8-HJ) 0= . (5)
I)

EB is the energy for state B and the Hamiltonian matrix elements that appear in this equation
and elsewhere are defined as:

HIj- hijJi + Y (ij Ikl)F',,j (6)
ij ijkl

where the symbols A' and 'A,/kt denote the one and two particle coupling coefficients, re-
spectively, and hij and (ij I k I ) denote the one and two electron integrals over the MO's;
the (i j I k I) are written in Mulliken notation.

The molecular orbitals are assumed to variationally optimize the SA energy functional,

£2 £2

ESA Y, = OR( R IHI1IRY)=X (oRER, (7)
R R

which only involves a subset of all N electronic states. The number of states in this subset
is denoted £2 and these states are called internal states and labeled R, S, T, U.
Accordingly, the states not in this subset are termed externals. The number of external
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wave functions is denoted A, and £2 + A = N. The a0R in eq. (7) is the weight factor

assigned to the internal state R.
In the SA energy functional, only the £2 internal states appear, and these states are as-

sumed to diagonalize the Hamiltonian as in eq. (5). For purposes of derivation, all the ex-
ternal plus internal states are assumed to obey eq. (5). However, as demonstrated explic-

itly later in this paper, the precise nature of the external states (in particularly that they obey

eq. (5)) disappears in the final working equations.

The condition that ESA be stationary with respect to variations in the molecular orbiuas
in the 'R'S results in having the SA-Generalized Brillouin Theorem (GBT)

SA 0 (8)

fulfilled.

The SA Lagrangian in eq. (8) is defined as:

i - Zhik + 2 1: (i k t m lAtm, (9)

k kim

with the one and two particle SA density matrices defined as the weighted sum of one- and

two-particle density matrices involving only the internal states:

£"2
i -- o)R i/ ,(10a)

R

SA
Fij k- E R k (lOb)

R

The density matrices for each of the internal states are given as:

j- ic C C iJ, (Ila)

IJ
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To maximize understanding of the equations obtained in this section, in agreement with
the above notation and the notation in Ref. 12, we adopt the following conventions:

V, P, p, a denote AO's or SO's,

i, j, k, 1, m, n, p " MO's,
I, J, K, L " CSF's,

A, B " states in general,
R, S, T, U " internal states,

P, Q " external states.

In order to derive geometrical response equations, one can directly differentiate eqs. (5)
and (8) with respect to the coordinates that define the distortion to be considered. To de-
termine the geometrical first-order CSF-responses for energetically degenerate and equally
weighted internal SA states, we need to take first- and second-order derivatives with re-
spect to the distortion coordinate a. These differentiations and the resulting equations are
treated in the next two subsections; before doing so, we define a few quantities and intro-
duce identities that will be used for these derivations.

The geometrical first- and second-order state-state responses among the states A and B,
V A" and VAB, respectively, are defined from the first- and second-order CSF-responses

for state A with respect to the coordinate a :

NC : V, af CBa (12)

aa -1

B

N

These definitions lead to the following identities:

0 = VA B + VIA, (14a)

0 = V' B + VB A + 2 . BCI 0(CI (14b)
I a a
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a VA BV +,acCac (14c)

C' -C' Va D Va D
I

D (14d)

Similarly, the geometrical first- and second-order orbital responses among orbitals i andj,

Uj and Uija, respectively, are defined in terms of responses of the MO-coefficients:

I-- Ujai Khu (15)

j

a2 U' KJ . (16)

These definitions imply the following identities:

0 = Uaj + Uai + Sa , (17a)

0=Ui" + Um  + Sfq + 2 (UakUak - SSfa), (17b)
k

a = U, kUj , (17c)

with S and S 9 defined as:

SP- Kpi Ki x m 1 x )  (18a)
V

sfl-2y KiK, (18b)"

As stated above, these identities will be of considerable use in the derivations carried

out below.
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B. Linear Geometrical Response Equations and First-Order Directional
Energy Derivatives

1. The Response Equations

Just as eqs. (5) and (8) constitute the fundamental working equations of SA-MCSCF
theory, their derivatives form the basis on which the desired wave function and energy re-
sponses can be determined. With the first-order energy derivative along the coordinate a,
EB, defined as:

EZ- = , (19)

first order differentiation of eq. (5) with respect to the coordinate a, gives the set of equa-
tions:

o =8B AE + (EB- EA) VBa - CICA H'. (20)
IJa

The derivative of the Hamiltonian matrix with respect to the coordinate a appearing above is
given in terms of quantities defined earlier and the so-called derivative Hamiltonian, as:

a ',hi + ')+21 (ikllm)(I- +fjAlm ,) (21)
-1 " j kklm j

The derivative Hamiltonian is:

Hf- h? + I (ijIkl)2 iJk t 1 (22)
ij ijkl

where:

hX KoIKyt aho, (23a)
'U V aa

(iji k l -  KiKpKpKa Za (23b)
ILVPa
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Similarly, first-order differentiation of eq. (8) with respect to the coordinate a gives the

equation:

DA

O=_Sla S a+y aXX VPR c(Ti'-1f
R P 

J

+ y V~as )R - Ot)CJR7T/s- 7fi5 )
S>R J

+X1:Ua kY*jl Yjik -YIjkn + ji'kn
n>k

di v! 16 kll A'n+kj ine'Al

_ .. k [ ijkn - Yjikn + j Ojf'*
n>k

_IXS a -Y n + ]l'jn (24)
n

where we have used the defimitions:

__S -- hat j + 2 X (ikIlm)a FI1km (25)

k kim

TijR XCR[ X hik(jIJ+ )J)+ 2 X (i kIlm)(F jJlm+ fjlm)l, (26)

I k km k(

Y5ink- hi n +2 {(inIlm) jlklm+(il1nm)(Tm + I-j/mt)} (27)
lm

2. Problems that Arise When Degenerate States Have Equal Weighting

As shown in Ref. 12, the fundamental results of eq. (20) and of eq. (24) for B refering

to internal states only (i.e. B = R), can be combined to give the geometrical first-order

response equations that determine most, but not all, of the desired orbital responses and

state-state responses that involve internal states. If two or more of the internal states are

energetically degenerate and equally weighted, it is seen from eqs. (20) and (24) that all

terms involving the state-state responses among these states drop out. Therefore state-state

responses among equally weighted energetically degenerate states can not be resolved from
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these geometrical first-order response equations. If energetically degenerate states are as-
signed unequal weights, the terms involving these same state-state responses remain pre-

sent in eq. (24), and it is therefore possible to resolve these state-state responses from the

geometrical first order response equations if unequal weighting are (probably inappropri-

ately) assigned to the corresponding degenerate states.

3. Unitary Transformations of Degenerate States in Preparation for the Distortion

In all cases where the states A and B belong to a degenerate set, eq. (20) expresses an
important constraint, which is dependent on the distortion coordinate and which must be
obeyed by the CI coefficients of these states:

0 A % ;;- *(28)
I,

In general, this condition will not be fulfilled for the degenerate states originally ob-
tained in the SA-MCSCF procedure (in the two dimensional example in Section II these
states were denoted T and 'u). However, due to the energetic degeneracy among these
states, arbitrary linear combinations that fulfill eq. (28) can be formed of these states.
Defining the symmetric matrix Ka with elements:

K a C c, al % ' (29)
IJ

the unitary transformed eigenstates (TlR and T's in the example of Section II) are defined in

terms of the normalized eigenvectors va of the secular problem:

( KA-Ea l ) Va = 0. (30)

That is, the normalized eigenvectors va define the unitary transformation matrix, briefly
discussed in Section II.B, that is used to transform the "original" degenerate eigenstates to
the "transformed" degenerate eigenstates that fulfill eq. (28). The eigenvalues Ea's of eq.

(30) are the directional energy derivatives in the direction of coordinate a for the

"transformed" degenerate states.

The first order responses involving degenerate internal states obtained from the geo-

metrical response equations of Ref. 12 apply to the "original" states. By using the unitary
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matrix defined from the va's, these responses must be transformed from the "original" state
basis to the "transformed" state basis.

If, although likely inappropriate, unequal weights are assigned to degenerate states, it
might be difficult to impose the condition expressed in eq. (28). For example, unequal
weighting of states that are supposed to be energetically degenerate (case b in Section 1I)
might artificially lift this degeneracy. Unitary transformations among such states will there-
fore not give new eigenstates, and hence the condition in eq. (28) can not be imposed. In
such cases, credible CSF-responses can only be found if equal weighting of the degenerate
states is used.

4. Directional Derivatives of Surfaces and Wave Functions Exist Although Analytical
Derivatives do Not
The extra condition expressed in eq. (28) was not treated in Ref. 12, nor has it, to our

knowledge, been addressed in any other published work. However, this is a crucial condi-
tion, which applies to energetically degenerate CI-functions in general. For eigenstates that
are energetically degenerate at a given reference geometry, but not energetically degenerate
at a geometry infinitesimally distorted along the a coordinate, this condition guaranties that
the eigenstates will evolve continuously with the distortion. If the condition is not fulfilled,
the eigenstates will be discontinuous, as a consequence of which, the state-state responses
and the related non-adiabatic coupling elements will be ill defined. This reflects the fact that
intersecting potential surfaces are not analytically differentiable. Therefore an energy gradi-
ent is non-existing although the energy slope and higher derivatives for a specific direction
are well defined.

It is appropriate at this time to clarify the above results in light of the conventional point
of view on adiabatic potential energy surfaces as described by Davidson. 5 It is convention
to define the k'th potential surface of global symmetry Fas formed from that energy which,
at each value of the internal nuclear coordinates, is obtained as the k'th energy (in order of
increasing energy) of the SA-MCSCF process. Generally, potential surfaces defined in
this manner are not differentiable at crossing points; that is, for these crossing points
molecular gradients or hessians can not be found, and also for the conventional adiabatic
surfaces directional energy derivatives as found from eq. (30) do not apply.

However, directional energy derivatives do apply to the surfaces which are simply
defined by the energies of the continuous states detailed in Section III.B.3. Herzberg and
Longuet-Higgins 19 denote such surfaces as conically self-intersecting potential (CSIP)
surfaces. The CSIP surfaces are closely related to the conventional adiabatic surfaces but
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one CSIP surface consist of two or more adiabatic surfaces. To better understand this
point, let us take an example from the work of Davidson.5

For Dh conformations of the H3 system, the lowest 2y+ and 2yu+ eigenstates cross.
When distorted, via asymmetric stretching motion, to Cwo. symmetry, both of these states
evolve into 2Z+ eigenstates. The energetically lower of the 21+ states connects to the lower

of the 2: + and 21u+ states (i.e., to 2Z g+ at one side of the crossing and to 2yu+ at the
other side of the crossing). Following a path that goes through the crossing (for instance
the path along the D..h preserving coordinate) the energetically lower eigenstate adiabati-
cally evolves into the energetically higher. A path starting and ending at the same nuclear
configuration, can therefore be chosen such that when adiabatically following one of the
considered eigenstates, this eigenstate starts as the energetically lower and ends as the
higher, or vice versa , starts as the higher and ends as the lower. The two different en-
ergies for the same nuclear conformation obviously belong to two distinct conventional
adiabatic surfaces. According to the definition however, these two energies belong to the
same CSIP surface, as will all energies for the states considered in this example. See also
Fig. 1.

If one only considers potential surfaces in regions away from intersections, it is of
course reasonable to treat them as separate surfaces. On the other hand, if, as in this work,
one deals with potential surfaces in regions where they are connected, one needs to treat
them as such and in this situation our definition of a CSIP surface is appropriate.

C. Second-Order Response Equations and Second-Order Directional
Energy Derivatives

I. The Two Basic Equations

To make further progress toward obtaining equations for the state-state responses
among degenerate, equally weighted states, we assume that the geometrical first-order
response equations have been solved for the orbital responses and for the state-state
responses which they define. Further, we take as our energetically degenerate eigenstates
those defined by the eigenvectors to eq. (30) that satisfy eq. (28).

Taking the second derivative of eq. (8) with respect to the coordinate a gives the fol-
lowing equation:

12 A

R P 1



18

+ X RO ( ) O
S>R

n fj(f k jiNkY,', ijk Yjikn + AikC6J -8j kC4 -8i EkJ + 6j n k )
n>k

S>R I

2 
7

R Ji

j (31)

where we have introduced the following definitions:

e~~ U Uk(&8kefl,a 8Ja~ + ySa &afk

n k

+2XUp ,(Ua~kL~J,~k

p k

+4 Y, [(inlpk)Zjsnpk -(jn I Pk) ZS k]

np k

-~ [X~u~iUka SaSa)+Sn(~Yn +4m ~ ySA S

12 Uj nk Snk kn+8 d 
ii 

(32)
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-aJR pJ aR+Uk,~-jk

nk

+XCIR(YJfl k + Yijj'nk. Yjffnk~ In(k)]~ (33)

deffY, hi k jjj+ 2X (ik IlIm) I'jji (34)
k kim

For shorthand notation in eqs. (32) - (34) we have defined:

ijnk - i l n11m)Fj j1m + (il11n m)(F.Jkm + Flm k)) (35)

~~ijnk -)l~ J +21(i mFm(l~m~'~mF~k (36)
1 m

TP -C~hqk(j +yjk)+2 1 (iklmr 1 Ljk +j~~, (7
Ij I k k kim Il~jkm)

zj~p k~ [Im -i Unam ( rj-mAk+ rIiAk 1)] (38)
Inm

and:

k kim

with:

h~.q KAKJ (40)

Taking the second derivative of eq. (5) with respect to the coordinate a gives:

0 B =8 A Era+ ( Ea-E~a ) Va A +( EB -EA( VB'A +~ --
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ad cA +C r B CJA )LjB CJ I2t

- -- , + IT a , ac 2 (42)

with the second order directional energy derivative EB defined as:

EB a--(43)

Using eq. (14b) it can be seen that eq. (42) is symmetric in A and B. Eqs. (12), (14d),
and (20) can now be exploited to rewrite eq. (42) as:

0 =1B A Ea+ (EB -EA ) VA-XI U&9X? CPA( T 8 -jjj T)g
i>j I

+ -

where NjB is defined as:

al2 ~ TJ B~s+ ~ a~Uk SqtkSik)
i>j Ij k A

TI [ cP4 + 2 UjA Uiat - ?l SA2.k

-X CJH~-2XUa. rB

I ij

-X ui, UakE CI ( j k + Yij, ). (45)
ij nk

Notice that, in contrast to eq. (42), eq. (44) does not include products of first order CSF-
responses; that is, eq. (44) is linear in the response quantifies.

2. Combining the Two Equations into One
In this work, we are only interested in responses that concern the internal states, thus

we are lead to use eq. (44) with B refering to the internal states (i.e. B = R). Since eq. (31)
and these B = R cases of eq. (44) are coupled, it is convenient to set up a single matrix
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equation that contains both sets. In order to simplify the notation, we assume that within
the internal states there exist only one set of energetically degenerate states. That is, there
may be a set of states that are doubly, triply, or more degenerate, but there are not two or
more such degenerate sets of states. All states belonging to this degenerate set are assumed
to be internal states and these degenerate states are all assumed to have the same weighting
factor denoted wd . For further convenience, the indexing of the states is constructed such
that these degenerate internal states appear first, then come the other internal states after
which come the externals. The matrix equation that embodies eq. (31) and eq. (44) forB
refering to internal states then reads:

Al 1 ;21+A3 +A41+AS1+Al6 V1  D1

A21 X2 2 0 0 0 0 V2  Dj2

A 3 1 0 36 V3 D3

A4 1  0 0 A44  0 0 V4  D 4

A 5 1 0 0 0 A55 A56  V 5  D 5

A6 1  0 0 0 0 A6 6  V6  D6  (46)

The definitions of the individual terms in the above matrix are found below.
Recall that the CSF-responses of the degenerate equally weighted states give rise to the

state-state couplings that can not be obtained by solving the first-order equations. To sepa-
rate out these more-difficult-to-compute state-state couplings from the couplings that must
first be obtained from the first-order equations, let us express the CSF-responses of the de-
generate states as follows:

adaaF = , VR ~ (47)

The Wa R factor contains all contributions to the CSF-response of state R except those
arising from the degenerate equally weighted state-state responses. Here and in the follow-
ing, 2d is the number of energetically degenerate internal states. Accordingly, 12n is the

number of internal states that do not belong to the energetically degenerate set. On the right

hand side of eq. (47) the first term, WaR, which is defined through eq. (12), is built from
information already known from solving the first-order geometrical response equations and

from the transformation matrix found through eq. (30). The second term is a sum that in-
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volves state-state responses among degenerate internal states (i.e., it contains response

variables found from eq. (46)). When eq. (47) is inserted into eq. (31), the terms involv-

ing products of first-order state-state responses among degenerate internal states combine to

yield identically zero as a result of which eq. (46) is linear in all variables.

3. Definitions of the Matrix Elements

The full matrix A on the left hand side of eq. (46) is a square matrix, and the blocks of

A are arranged such that rows for the block AaG are labeled in the same way as columns

for the block AM. In defining the matrix blocks in eq. (46) we therefore only need to dis-

cuss the labeling of the rows. All of the matrix blocks and vectors are defined in eqs. (48a)

-(48t):

.11. SA S yiSA + ySA 3. 45 kES - 5i + 8i n dtl + (48a)

t, nk- ij nkjIn ijkn jkn+ Aknj

.6T? _CR =....JS wa R ( JA 1 6  -1i _S(J

aa8

S>R !

S>R I ]

wX S I W4

D1. ~ ~ --c a 2: Y,, w- Y,-.- a ,/-CI4,CR 1
>R I!1 a

dJ

iR IJ

12' -+ 2 y> WR wRc~Tj~~R~wR4 ,)

, R ::N1 aS: R( - 4
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aacd aJR adaR = J ( 8-2 COR, & ij - 2'.,,W] - Oi

R J R J

VAj- j 7 (48d)

For the elements in eqs. (48a) - (48d) the rows are labeled by the molecular orbital indices i

and j, for which the orbital rotation among orbitals i andj is allowed and i >j. The orbital

rotation among i and j is allowed if the internal wave functions emerging from the rotation

can not alternatively be generated by a unitary transformation of the CL-coefficients.

P, n k a AR P, n k - R ( J -ni -kR) , (48e)
J

AJPJTQ=AIA.TQ 0 5RT 1PQ O(EP-ER), (48f)
A P, T U = 2AR p. T CI - 81RO CIT Ci a E - Jj ERa (48g)

C-5-- R-2 R ) I -j Ea, (48g)

I J

R2 P (OR Cj NR - 2 -- IJ E; , (48i)

2 3

''2 P = V R VRP (48j)

The rows for the elements in eqs. (48e) - (48j) are labeled by the state indices R and P. P
21 -22 -2 -2

runs over external states while R for AR P. n k, AR P. S Q, V4 p, and DR p belongs to i? (i.e.
-3 1 33 '3 6 -3the internal non-degenerate states), and for AR P R t AR P S Q, AR P. T U, VR3p, and DRP

belongs to fX (i.e. the internal degenerate states).
1 5 1  _ (8

AR S. nk km AR S. nk =n k s (48k)

4 4  55AS.TU ARS. T U ffi 8 rrTS( - w )1Es-ER), (481)
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RTU-2Cop - (sRC-&RuCT) C jS-81u E ), (48m)
D 4

RS - j - --' 5,( E; (48n)

D5  WG(8o

V4- V5 s-V~ s. (48p)

For all the terms in the eqs. (48k) to (48p) the rows are labeled by the internal state indices
41R and S. S denotes states belonging to n2 while R denotes states that for AR S, n

44 D
AR S, T U, VR s, and D s belong to (2n but only if cOR *os and S > R, and for A5 1

ARS.TU, AjR S, TU, VR s, and DR5 s belong to I but again only if wo * cos.

ARS.,,- cS= n k-A: ,(48q)
J

ARS, TU-2E( 8RTC -6RU CT)- Ci(l-3uEZ) (48r)
i I

D -S-cs; a- , (48s)

6 a

VR S =VR S. (48t)

Also, for all terms in eqs. (48q) to (48t) the rows are labeled by the internal state indices R
and S, where both R and S denote states belonging to Od and S > R.

4. The Diagonal Equations of Eq. (44) Are Also Useful

A careful analysis of eqs. (44) and (46) shows that, even for B refering to internal
states, the diagonal terms of eq. (44) (i.e., those for which B = A ) do not appear in eq.
(46). The coupled equations of eq. (46) can be solved independently of these diagonal
equations, and having done so, the diagonal equations can be used to compute the direc-
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tional second-order energy derivatives for all of the internal states including the degenerate

ones. The details of this calculation are given below and in eqs. (52).

5. Transformation to the CSF Basis

The blocks of the matrix A and the parts of vector D marked with a tilde (~ ) contain

CI-coefficients for the external states. Since these Cl-coefficients are not usually known

because the solution of the SA-MCSCF equations produces only the CI-coefficients of the

internal states, it is crucial that this part of the coupled equations be transformed to a form

where these external states' CI-coefficients are not needed.

In deriving second-order MCSCF theory for SA wave functions, Lengsfield 20 intro-

duced a unitary transformation that accomplishes this goal. The details of how to make this

unitary transformation are described both by Lengsfield20 and in Ref. 12, and will not be

repeated here. The unitary transformation only affects the parts of eq. (46) that are marked

with tilde, and when it is applied, the final geometrical second-order response equations

read:

A1 1 A2 1+A3 1+A4 1+AS 1 + A I 6  V 1  D 1

A 2 1 A 2 2  0 0 0 0 V 2  D 2

A 3 1  0 A 3 3  0 0 A 3 6  V 3  D 3

A 4 1 0 0 A4 4  0 0 V 4  D 4

A5 1  0 0 0 A55 A 56  V 5  D 5

A6 1  0 0 0 0 A6 6  V 6  D6  (49)

The parts of eq. (49) that have not already been defined are given as:

ArK k= A3K, nk EO)R MKJ( T7 TLk n ), (50a)
J

22TL A 3 KTL- -RTO)R( YMKIMJLHIJ-MKLER+zLKL) (50b)

A3 6  C - c) ~J-- -

AR K. TU 2wR, ( 8eRTCY- UC[)Y MKj( M, Lj Ea), (50c)
I J
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DsKMORIMKJ (N7R21 , af(-- -uE. R (50e)

R KVRK VRe Cs c, (50f)
S

with:

LKLX CK
R (51a)

MKL -- - LKL (51b)

The row labels for the elements defined in eqs. (50a) - (50f) are R and K, with K running
2 1 2 2 2 tadV eog

over the full N -dimensional CSF-space. For AR K. . k, AR K, S L, K. and VR K R belongs

to (A, while forAR jn k AR KSL, A'T U, DR K, and VR3 K R belongs to f'2d. The factor

z appearing in eq. (50b) is an arbitrary constant in units of energy, introduced to enable the

transformation from the state-basis to the CSF-basis.

6. The Solutions of the Response Equations Contain First- and Second-Order Results

The solution vector V to eq. (49) contains both first- and second-order response infor-
mation. The first-order data contained in V6 are the state-state responses among energeti-

cally degenerate, equally weighted internal states. Once found, this information can be in-

serted into eq. (47) to determine the full geometrical first-order CSF-responses for the en-
ergetically degenerate and equally weighted internal states, thereby fulfilling a primary ob-

jective of this paper.

Having determined the second-order orbital responses that appear as the VI vector of

eq. (49), the diagonal terms of eq. (44) for internal states can then be used to determine the

directional second-order energy derivatives along the coordinate a:
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E C [ -U( -u NR,1 (52)
ER i>i I Ja a

This data combine with the directional first-order energy derivative obtained as the eigen-
values of the K matrix of eq. (30) to produce full first- plus second-order directional
derivative information for the energetically degenerate, equally weighted states.

Additional second-order information appears in the V solution vector of eq. (49). In
particular, the second-order CSF responses that do not include state-state responses among
energetically degenerate, equally weighted states are obtained. In analogy with the first-
order response case treated here, the second-order state-state responses among degenerate,
equally weighted states can be found by considering the third-order response equations.
This avenue will not be further pursued here, because it is beyond the goals of the present

paper.
In addition to the diagonal terms, there were other second-order equations in eq. (44)

for B refering to internal states only that were not used to construct the combined matrix in
eq. (46). These can be used to determine second-order state-state responses for internal
states R and S that do not both belong to the energetically degenerate set, but for which the
weighting factors are equal (i.e. r0R = o)s). For such states, eq. (44) can be rewritten as:

VRS S- R iNjR 1K-L --, ERj i j1a
I I i (53)

A detailed analysis reveals that all second-order orbital and state-state responses can be

obtained from eqs. (49) and (53) except for the VRA elements among the energetically de-
generate, equally weighted internal states. The second order responses VRA for these
states have to be determined from the third-order equations. Notice that second-order
responses, resulting from successive infinitesimal distortions along two distinct coordinates

a and b, for example VR A, are not considered in this work.

IV. SUMMARY AND DISCUSSION

In this work, the evaluation of first-order CSF-responses and first- and second-order
directional energy derivatives for energetically degenerate states has been made practical.
Several different circumstances under which two or more states can be degenerate were



28

first discussed. Situations for which symmetry dictates the first-order state-state responses

among the degenerate states were mentioned, and it was stressed that these state-state

responses usually have to be found by considering higher-order response equations.

In Section III, it was shown how second-order geometrical response equations can be

formulated such that first-order state-state responses among equally weighted, degenerate

SA-MCSCF wave functions can be found. In addition, expressions were obtained for

first- and second-order directional energy derivatives for these states. For directions or co-

ordinates that do not involve rotation or translation, these directional energy derivatives

apply to the CSIP energy surfaces defined in this work. Our definition of how surfaces

and wave functions connect as one moves through regions of degeneracy is compared to

the conventional adiabatic definition in which surfaces are connected via their energy

ordering. Although the CSIP surfaces have directional energy derivatives for geometries at

which states are degenerate, they are not analytically differentiable at these geometries.

Our derivation reveals that a specific linear combination of the degenerate states must be

formed if the states and surfaces are to connect according to our definition The condition

that specifies this linear combination results from the first order geometrical response equa-

tions, and it is shown that it dependents upon the coordinate for which the responses are to

be considered. As a consequence of this condition it has been argued that in cases where

the degeneracy is symmetry imposed, credible CSF-responses can generally only be ex-

pected if the degenerate state averaged states are equally weighted as in this work.

Let us end this discussion by recapitulating the important steps that according to the

shown derivations are needed for obtaining the linear CSF-responses and first and secord

order directional energy derivatives. The derivation apply to a system where the set of in-

ternal eigenstates contain a subset of equally weighted degenerate states. For this system it

is assumed that the SA-MCSCF wave functions have been optimized, and that the SA-

MCSCF first order geometrical response equations 12 have been solved for a distortion co-

ordinate. The first important step is then to solve eq. (30), which, dependent upon the

distortion coordinate, dictates the right linear combinations of the degenerate states to be

used for the calculation. The directional energy derivatives for these states, also result from

eq. (30). Eqs. (48a) - (48d), (48k) - (48t), and (50a) - (500 are then used to set up the

matrix equation eq. (49). Solving eq. (49) results in both geometrical first and second or-

der responses. The first order response are state-state responses among the energetically

degenerate states. Using eq. (47) these responses are combined with Cl-coefficients and

other responses obtained from the first order response equations to evaluate the CSF-

responses for the equally weighted degenerate internal SA-MCSCF states. Hereby we

have completely determined all geometrical first order responses for the system. The sec-
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ond order orbital responses that also results from eq. (49) are used in eq. (52) to determine
the directional second order energy derivatives for the degenerate internal states.
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FIGURE CAPTIONS

Figure 1. Qualitative sketch of adiabatic energies as function of two nuclear coordinates

Q1 and Q2 for two eigenstates. According to the conventional definition5 the energies

define two distinct adiabatic potential surfaces. These surfaces are connected through the

intersection point, and according to our definition they are to be viewed as one CSIP

surface (see text). The dashed line shows a path obtained by following the energy that

corresponds to an eigenstate as this eigenstate is adiabatically distorted along a path that

leads through the nuclear configuration of the intersection point. The path starts at the

lower point (L.P.) and ends at the upper point (U.P.). The nuclear configuration at the

L.P. is the same as at the U.P.
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